Isotopic composition of water in the tropical tropopause layer in cloud‐resolving simulations of an idealized tropical circulation

نویسندگان

  • Peter N. Blossey
  • Zhiming Kuang
  • David M. Romps
چکیده

[1] The processes that fix the fractionation of the stable isotopologues of water in the tropical tropopause layer (TTL) are studied using cloud‐resolving model simulations of an idealized equatorial Walker circulation with an imposed Brewer‐Dobson circulation. This simulation framework allows the explicit representation of the convective and microphysical processes at work in the TTL. In this model, the microphysical transfer of the isotopologues (here, HDO and H2 O) among water vapor and condensed phase hydrometeors is explicitly represented along with those of the standard isotopologue (H2 O) during all microphysical interactions. The simulated isotopic ratios of HDO in water vapor are consistent with observations in both magnitude and the vertical structure in the TTL. When a seasonal cycle is included in the Brewer‐Dobson circulation, both the water vapor mixing ratio and the isotopic ratios of water vapor display a seasonal cycle as well. The amplitude and phase of the seasonal cycle in HDO are comparable to those observed. The results suggest that both the sublimation of relatively enriched ice associated with deep convection and fractionation by cirrus cloud formation affect the isotopic composition of water vapor in the TTL and its seasonal cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotopic composition of water in the TTL in cloud-resolving simulations of an idealized tropical circulation

The processes that fix the fractionation of the stable isotopologues of water in the tropical tropopause layer (TTL) are studied using cloud-resolving model simulations of an idealized equatorial Walker circulation with an imposed Brewer-Dobson circulation. This simulation framework allows the explicit representation of the convective and microphysical processes at work in the TTL. In this mode...

متن کامل

Isotopic Fractionations in the TTL in cloud-resolving simulations of an idealized tropical circulation

The processes that fix the fractionation of the stable isotopes of water in the tropical tropopause layer (TTL) are studied using cloud-resolving model simulations of an idealized equatorial Walker circulation with an imposed Brewer-Dobson circulation. This allows the explicit representation of the convective and microphysical processes at work in the TTL. In this model, the microphysical trans...

متن کامل

Maintenance of tropical tropopause layer cirrus

5 [1] A two-dimensional cloud resolving model with explicit bin microphysics is used to 6 study the maintenance of tropical tropopause layer (TTL) cirrus. Numerical simulations 7 using this model show that a TTL cirrus with a maximum radiative heating rate of 3 K/day 8 is able to self-maintain for as long as 2 days if it contains ice crystals whose initial 9 mean radius is smaller than about 5 ...

متن کامل

Isotopic composition of stratospheric water vapor: Implications for transport

We develop a series of models of transport in the upper tropical troposphere in order to explain the observed abundance and isotopic composition of stratospheric water vapor. We start with the Rayleigh fractionation process and add the effects of mixing and recirculation of stratospheric air through the upper troposphere. We compare our measurements with model calculations for a range of input ...

متن کامل

Keith: Inferences from the Isotopic Composition of Water Vapor

Air may cross the tropical tropopause either by gradual ascent or in localized episodes associated with convection. While observations demonstrate that water vapor mixing ratios of air entering the tropical stratosphere are consistent with the mean tropical tropopause temperature, they do not resolve key mechanistic questions, such as the relative contribution of gradual or episodic transport, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010